Topics Covered

« Ray Tracing
— Ray Types
— Recursion in Ray Tracing
— Ray-Object Intersection

 Discussion on Ray Tracing
— As Hidden Surface Removal
— As Global Hlumination
— Acceleration Techniques
— Path Tracing

« Recent Trend in Ray Tracing

Recall: Two Approaches to Rendering - 2

for each pixel in image(film plane)
determine which object should be shown at the pixel
set color of the pixel based on texture and lighting model

N
EEE
EEE
EED
(ray intersection is rendered to screen) Il
1]

 Called iImage-oriented rendering or ray tracing

Ray Tracing

Forward Ray Tracing

« Simulate lights in nature
« Alight source emits photons

 Follow photons using rays — as paths of
photons

* Problem: Many rays will not contribute
to Image

 Highly inefficient!

Backward Ray Tracing

» Trace rays backward from viewer to light
sources

» Each ray goes through each pixel in image
plane from eye position

« Color of each pixel is determined based on /
which object the ray intersects with ~

projection plane
reference

point

« Much more efficient than forward approach -
we can only consider rays that contribute
image!

» Actually, this approach is what we call “Ray
Tracing”

Types of Rays

Eye rays

— from eye to surface, passing through each 5 o 1
pixel ¢

Shadow (Illumination) rays
— from surface point to light source

Reflection rays
— from surface point in mirror direction

Refraction rays
— from surface point in refracted direction

Eye Rays

 Casted from eye (or camera) to surface, passing
through a pixel

 Find closest surface point hit by the ray

q

Shadow (lllumination) Rays

 Casted from surface point to each light source

— If the ray is blocked by an opaque object, no
contribution of the light for the pixel color (shadow)

Shadow (or lllumination) Rays

 Casted from surface point to each light source

— If the ray is blocked by an opaque object, no contribution of
the light for the pixel color (shadow)

— If the ray reaches the light, compute the contribution of the
light for the pixel color using local illumination model (such
as Phong model)

Reflection Rays

« Casted from surface point in mirror direction if the surface is
specular (following the laws of reflection)

« If this ray reaches other surfaces, cast shadow / reflection /
refraction rays from that surface point again (recursive)

Refraction Rays

 Casted from surface point in refracted direction if the
surface Is transparent (following Snell’s law)

* If this ray reaches other surfaces, cast shadow / reflection /
refraction rays from that surface point again (recursive)

Recursion in Ray Tracing

« Reflection & refraction rays recursively spawn new
shadow, reflection, refraction rays at each
Intersection with object surface until
— contribution is negligible
— 0r some max recursion depth is reached

« Rays are attenuated with
— Specular reflectivity of object surface
— Opacity of transparent material
— Distance traveled through transparent material

Ray intersection

Cornell CS4620 Fall 2008 o Lecture 3 © 2008 Steve Marschner 13

Ray: a half line

e Standard representation: point p and direction d
r(t) =p+1td

— this is a parametric equation for the line

Cornell CS4620 Fall 2008 o Lecture 4 © 2008 Steve Marschner ¢14

Simple Strategy

e Parametric ray equation

e Gives all points along the ray as a function of
the parameter

o(t)=0+td
e Implicit surface equation

e Describes all points on the surface as the zero
set of a function

f(p)=0

e Substitute ray equation into surface
function and solve for t

f(o+td)=0
19 KAIST

Ray-sphere intersection: algebraic

e Condition 1: intersection pointr is on ray
r(t) =p+td

Condition 2: point is on sphere
— assume unit sphere;

x| =1« [x||* =1
f(x)=x-x—1=0

e Substitute:
(p+td)-(p+td)—1=0

— thisis a quadratic equation in t

Cornell CS4620 Fall 2008 ¢ Lecture 4 © 2008 Steve Marschner ¢4

Ray-sphere intersection: algebraic

e Solution for t by quadratic formula:

,_—d-pty(d-p?—(d-dp-p-1)
- d-d
t=-d-px+/(d-p)2—p-p+1

e Choose the smallest positive t

I

Cornell CS4620 Fall 2008 o Lecture -+ © 2008 Steve Marschner ¢17

Ray-Object Intersection

« Similarly, we can find ray intersection with
— Box
— Plane

— Triangle (which means we can use not only implicit
surfaces but also polygon meshes in ray tracing)

 I’ll just skip more details of ray-object intersection

[Practice] Ray Tracing Online Demo

Ray Tracer by Vjeux

http://fooo.fr/~vjeux/epita/raytracer/raytr
acer.html#portal

* Change the scene and click “Ray Trace!” button

http://fooo.fr/~vjeux/epita/raytracer/raytracer.html#portal

Discussion: Ray Tracing as Hidden Surface
Removal

* Ray-object intersection solves “Hidden Surface
Removal” problem

— Finding closest surface point hit by the ray

Discussion: Ray Tracing as Global lllumination

« Computing each pixel color (lighting) in ray tracing
— Use local illumination model to calculate direct contribution
from light sources (with shadow rays)

— Recursively compute indirect contribution from reflection /
refraction (with reflection / refraction rays)

 Final pixel color is the sum of these contributions

— S0 ray tracing can be considered as global (indirect)
Illumination model

* No diffuse reflection rays — Ray tracing is limited
approximation to global illumination

Discussion: Acceleration Technigues for Ray
Tracing

« Ray tracing Is slow!
— Spend most of time in ray-object intersection

— Proportional to (the number of pixels) x (the number of
primitives in the scene)

 To reduce the number of ray-object test,
— Bounding volume hierarchies
— Spatial subdivision

Discussion: Acceleration Technigues for Ray
Tracing

Bounding Volume Hierarchies 1

« Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

@ © B =P unding Volume Hierarchies 2

ierarchy to accelerate ray intersections
prsect node contents only if hit bounding volume

R -
———— — — — —— — — *a B 2% F oV F 2% o sl
T x 1 45]

o

Traditional Use of Rasterization

» Generally, ray-tracing is slower than rasterization,
but generates better quality results

* Thus, rasterization have been dominant for real-
time application

— Assingle frame should be rendered in a few tens of
milliseconds

— e.g. OpenGL or Direct3D for computer games

Traditional Use of Ray Tracing

But moviemakers can take as long as they like to render a single
frame

So ray-tracing-based rendering is dominant for non-realtime
applications
— e.g. movies, animations

— Generally rendered in offline using large CPU cluster, called render
farm

— Pixar, ILM, Weta Digital, ...

Similar but much more improved technique, path tracing,
captures diffuse scattering (with hundreds of thousands rays in a
pixel), so it can generates photo-realistic images

— Used not only by film makers, but also by architects

ey

]
i

|

»»»»»

¥
a

R

o

—

iﬂ '_/ '~;\
R
iy

|

lmy - N

o
-
i
—~

EAN

Recent Trend in Ray Tracing

* Modern ray tracers have started to use GPUs to
speed up the computation

— Arnold(Autodesk), V-Ray(Chaos Group),
Renderman(Pixar), ...

* Even real-time ray tracing engines have been
announced

» Perhaps, ray tracing based games will become
popular..?

Recent Trend in Ray Tracing

* NVIDIA OptiX

— A software development kit for achieving high performance
ray tracing on the GPU

— Announced at SIGGRAPH 2009
— https://developer.nvidia.com/optix

Microsoft DirectX® Raytracing (DXR)

— Fully integrates ray tracing into DirectX, and makes it a
companion to rasterization

— Announced on March 19, 2018
— https://blogs.msdn.microsoft.com/directx/2018/03/19/announ

cing-microsoft-directx-raytracing/

https://developer.nvidia.com/optix
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/

Recent Trend in Ray Tracing

 NVIDIARTX™ Platform
— Ray Tracing (OptiX, Microsoft DXR, Vulkan)
— Al-Accelerated Features (NGX)
— Rasterization (Advanced Shaders)
— Simulation (CUDA 10, PhysX, Flex)
— Asset Interchange Formats (USD, MDL)
— https://developer.nvidia.com/rtx
— https://youtu.be/tjf-1BxpR9c

OptiX | DXR | Vulkan

MDL and USD

Rasterization Ray Tracing Compute
(Graphics Pipeline) (RT Core) (CUDA)

NVIDIA RTX Platform

https://youtu.be/tjf-1BxpR9c
https://youtu.be/tjf-1BxpR9c

Acknowledgement

* Acknowledgement: Some materials come from the lecture slides of

Prof. Andy van Dam, Brown Univ., http://cs.brown.edu/courses/csci1230/lectures.shtml

Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/
Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cqi

Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://cs.brown.edu/courses/csci1230/lectures.shtml
http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
https://sglab.kaist.ac.kr/~sungeui/CG/
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

